Digital Evidence Composition in Fraud Detection

نویسندگان

  • Sriram Raghavan
  • S. V. Raghavan
چکیده

In recent times, digital evidence has found its way into several digital devices. The storage capacity in these devices is also growing exponentially. When investigators come across such devices during a digital investigation, it may take several man-hours to completely analyze the contents. To date, there has been little achieved in the zone that attempts to bring together different evidence sources and attempt to correlate the events they record. In this paper, we present an evidence composition model based on the time of occurrence of such events. The time interval between events promises to reveal many key associations across events, especially when on multiple sources. The time interval is then used as a parameter to a correlation function which determines quantitatively the extent of correlation between the events. The approach has been demonstrated on a network capture sequence involving phishing of a bank website. The model is scalable to an arbitrary set of evidence sources and preliminary results indicate that the approach has tremendous potential in determining correlations on vast repositories of case data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of the effect of internal control weaknesses on fraudulent financial reporting risk with considering the moderating role of CEO characteristics

Internal controls play a vital role in prevention of fraud. Internal controls reduce the opportunities for committing fraud. According to information symmetry theory, internal control disclosure the solution is to examine the role of management accountability.  To investigate the subject, based on the probit regression model the data related to the variables is analyzed the period from 2013 to ...

متن کامل

Presenting a Model for Financial Reporting Fraud Detection using Genetic Algorithm

both academic and auditing firms have been searching for ways to detect corporate fraud. The main objective of this study was to present a model to detect financial reporting fraud by companies listed on Tehran Stock Exchange (TSE) using genetic algorithm. For this purpose, consistent with theoretical foundations, 21 variables were selected to predict fraud in financial reporting that finally, ...

متن کامل

MEFUASN: A Helpful Method to Extract Features using Analyzing Social Network for Fraud Detection

Fraud detection is one of the ways to cope with damages associated with fraudulent activities that have become common due to the rapid development of the Internet and electronic business. There is a need to propose methods to detect fraud accurately and fast. To achieve to accuracy, fraud detection methods need to consider both kind of features, features based on user level and features based o...

متن کامل

Ensemble Classification and Extended Feature Selection for Credit Card Fraud Detection

Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...

متن کامل

Credit Card Fraud Detection using Data mining and Statistical Methods

Due to today’s advancement in technology and businesses, fraud detection has become a critical component of financial transactions. Considering vast amounts of data in large datasets, it becomes more difficult to detect fraud transactions manually. In this research, we propose a combined method using both data mining and statistical tasks, utilizing feature selection, resampling and cost-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009